In cluster environment, the location of  SPfile for ASMread from GPnP profile.
[grid@host01 peer]$ gpnptool getpval -asm_spf
Warning: some command line parameters were defaulted. Resulting command line:
         /u01/app/11.2.0/grid/bin/gpnptool.bin getpval -asm_spf -p=profile.xml -o-
The oputput of the query shows that SPfile is on ASM in DATA diskgroup. To find out the
 location of ASM disks, following query is issued :
[root@host01 peer]# gpnptool getpval -asm_dis
ASM-Profile id=”asm” DiscoveryString=””
The  device headers of every device in the disk string returned by the above query are scanned  (if configured by you at ASM initial setup time). Here Discovery String is blank is as ASMDISKSTRINGS parameter has not been set. Hence, headers of all the ASM disks are scanned .
Here, I have shown the output of the query only on the disk which contains SPfile.(spfflg is not null)
[root@host01 ~]#  kfed read /dev/sdb3 | grep -E ‘spf|ausize’
kfdhdb.ausize:                  1048576 ; 0x0bc: 0x00100000
kfdhdb.spfile:                       16 ; 0x0f4: 0x00000010
kfdhdb.spfflg:                        1 ; 0x0f8: 0x00000001
In the output above, we see that
     the device /dev/sdb3 contains a copy of the ASM spfile (spfflg=1).
     The ASM spfile location starts at the disk offset of 16 (spfile=16)
Considering the allocation unit size (kfdhdb.ausize = 1M), let’s dump the ASM spfile from the device:
[root@host01 ~]#  dd if=/dev/sdb3 of=spfileASM_Copy2.ora skip=16  bs=1M count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.170611 seconds, 6.1 MB/s
[root@host01 ~]# strings spfileASM_Copy2.ora
+ASM1.__oracle_base=’/u01/app/grid’#ORACLE_BASE set from in memory value
+ASM2.__oracle_base=’/u01/app/grid’#ORACLE_BASE set from in memory value
+ASM3.__oracle_base=’/u01/app/grid’#ORACLE_BASE set from in memory value
+ASM3.asm_diskgroups=’FRA’#Manual Mount
+ASM2.asm_diskgroups=’FRA’#Manual Mount
+ASM1.asm_diskgroups=’FRA’#Manual Mount
Using the parameters in SPfile, ASM is started.
Once ASM is up, OCR is read by CRSD and various resources on the node are started.
Each node reads network information in GPnP profile and using GNS,  negotiates appropriate network identity for itself . Hence, nodes can be dynamically added/deleted.

Whenever GPnP profile is not present, it is automatically copied from existing nodes by GPnPd as pending.xml . Whenever, profile is updated, it is automatically renamed to profile.xml.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.